skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hussain, Waseem A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study explores the solution- and solid-state assembly of phenylalanine-based hypervalent iodine macrocycles (HIMs) with lithium and sodium cations. The metal cation binding of HIMs was evaluated by addition of lithium tetrakis(pentafluorophenyl)borate ethyl etherate LiBArF20and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate NaBArF24. The electron-rich, outwardly projected carbonyl oxygens of the HIM co-crystalize with the cations into bent supramolecular architectures. Both crystal structures show a pattern of assembly between HIM and metal cation in 2:1 ratio. While association with sodium leads to a polymer-like network, the lithium crystal structure was limited to dimeric assemblies of HIM. In the lithium-coordinating complex, the oxygen–lithium–oxygen bond angle is approximately 98.83°, displaying a closer arrangement of two HIMs. In contrast, the sodium complex exhibits a more open orientation of two HIMs with an oxygen–sodium–oxygen bond angle close to 167.98°. Lastly, a comparative study of association constants and binding energies for phenylalanine-based HIM with LiBArF20and NaBArF24are presented. 
    more » « less
    Free, publicly-accessible full text available May 30, 2026
  2. New conjugated polymers that incorporate dihexylanthradithiophene (DHADT) in the main chain were prepared by Stille, Sonogashira, and Yamamoto cross-coupling polymerization reactions. The polymerization chemistry is enabled by a soluble 5,11-dibromodihexylanthradithiophene monomer that is capable of cross-coupling reactions. Five readily soluble DHADT containing polymers were prepared and characterized experimentally and computationally. These polymers possess HOMO energies of −5.18 eV to −5.43 eV and LUMO energies of −3.0 eV to −2.82 eV. The notable optical features include broad absorption and band gaps ranging from 1.62 eV to 2.15 eV. Polymers were tested in organic field effect transistors and were found to operate in the p-type regime. 
    more » « less
  3. Isomerically pure 5,11-dibromo-2,8-dihexylanthra[2,3- b :76- b ′]dithiophene, a brominated analog of anthracenedithiophene (ADT), was prepared and utilized for a palladium catalyzed cyclopentannulation reaction with 3,3′-dimethoxy-phenylacetylene to give cyclopentannulated ADT (CP-ADTs). A further Scholl cyclodehydrogenation reaction gave contorted aromatics with large splay angles, low optical gaps, and low LUMOs. 
    more » « less